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Abstract The management and the processing of Earth science data has been
gaining importance over the last decade due to higher data volumes generated by
a larger number of instruments and ground stations, and due to the increase in
complexity of Earth science models. In order to take full advantage of the vast
amount of available data, we need the ability to seamlessly merge data from dif-
ferent sources within the models, and we must be able to process this data in an
efficient and timely manner. In order to support these goals, we are developing
the Java Distributed Application Framework (JDAF) - a flexible and extensible
framework that simplifies the design and implementation of Earth science pro-
cessing systems. In order to achieve better performance and resource utilization,
we parallelize some of the Earth science algorithms within the framework.

1 Introduction

The management and the processing of Earth science data has been gaining an impor-
tance over the last decade due to higher data volumes generated by a larger number of
instruments and ground stations, and due to the increase in complexity of Earth science
models that use these data. This growth in volumes and complexity is just the begin-
ning, because in order for us to be able to understand and predict the processes within
the Earth, we need a global data set spanning many years and possibly even decades.
Additionally, in order to take full advantage of the vast amount of data being produced,
we need the ability to seamlessly merge data from different sources within the models.
With the launch of NASA’s Terra and Aqua missions during the last 3 years, the need
for more efficient and scalable data systems is even more apparent. This is true not
only at the level of large data processing centers, but also at smaller research labs and
universities. Our project addresses many of the issues facing the Earth science commu-
nity by developing an efficient and scalable technology that incorporates automation in
access, transport, translation, distributed processing and analysis of the Earth science
data. Moreover, the technology provides a capability for fusion of data from multiple
satellites and ground stations. This enables us to process more data more efficiently



and in an intelligent way, and thus give the Earth scientists better foundations for their
research and, by doing so, improve the ability to understand and predict Earth system
processes.

We are currently testing a prototype of our technology on the Terrestrial Observa-
tion and Prediction System (TOPS) [1], whose goal is to provide nowcasts and long-
term forecasts of several biospheric variables for the continental US. The main inputs
required by TOPS are landcover, daily temperatures, humidity, radiation, fraction of ph-
tosynthetically active radiation (FPAR) [2], leaf area index (LAI) [2], and wind vectors.
These datasets currently come from a variety of sources: MODIS Terra (FPAR/LAI
and landcover), NCEP’s Rapid Update Cycle (temperatures, wind vectors, humidity,
radiation), and CPC (weather stations providing precipitation and additional temper-
ature information). We are planning additions of other sources of data, for example
FPAR/LAI products from Aqua MODIS and from MISR, so that we can improve the
reliability of our inputs and thus provide better forecasts generated by TOPS. We will
also extend the coverage of TOPS forecasts to other regions around the world, and so
we will require even more datasets. Because of the characteristics of the TOPS system,
it is a very suitable test-bed for our technology, and provides an important connection
with the Earth science community.

The remainder of the paper is structured as follows: in section 2 we introduce in
more detail some of the challenges faced by the Earth science community, in section 3
we describe the foundations of our system and in section 4 we show an example of a
system where we are currently using our framework. Finally, in section 5 we describe
our plans for the future.

2 Background

2.1 Earth Science

The latest generation of NASA Earth Observing System [3] satellites has brought a new
dimension to continuous monitoring of the living part of the Earth System, the Bio-
sphere. EOS data can now provide weekly global measures of vegetation productivity
and ocean chlorophyll, and many related biophysical factors such as land cover changes
or snowmelt rates. However, information with the highest economic value would be
forecasting impending conditions of the biosphere that would allow advanced decision-
making to mitigate dangers, or exploit positive trends. NASA’s strategic plan for the
Earth Science Enterprise identifies ecological forecasting as a focus for future research.
Ecological forecasting predicts the effects of changes in the physical, chemical and bi-
ological, environment on ecosystem activity. Imagine if we could accurately predict
shortfalls or bumper crops of agricultural production, or West Nile virus epidemics or
wildfire danger 3-6 months in advance, allowing improved preparation and logistical
efficiency. The climate forecasting skills of many coupled Ocean-Atmosphere general
circulation models (GCM) [4] have steadily improved over the past decade. Given ob-
served anomalies in sea-surface temperatures from satellite data, GCMs are able to fore-
cast general climatic conditions 6-12 months into the future, trends of hotter/colder tem-
peratures and wetter/drier precipitation than normal, with reasonable accuracy. While



such climatic forecasts are useful alone, the advances in ecosystem modeling allow us to
explore specifically the impacts of these future climate trends on the ecosystem directly.

One of the key problems in adapting climate forecasts to natural ecosystems is the
’memory’ that these systems carry from one season to the next (e.g. soil moisture, plant
seed banks, fire fuel accumulation etc.). Simulation models are often the best tools
to carry forward the spatiotemporal ’memory’ information. The power of models that
can describe and predict ecosystem behavior has advanced dramatically over the last
two decades, driven by major improvements in process-level understanding, computing
technology, and the availability of a wide-range of satellite- and ground-based sensors.

2.2 Data Processing Issues

Many of the Earth science processing systems, both in small research labs and univer-
sities and in large data centers, are driven by a large number of scripts performing most
of the scheduling and processing setups. Despite some advantages of this approach,
mainly its rapid development, there are many drawbacks, including difficulties in main-
tainability, scalability to a larger number of datasets and processes, and flexibility in
accommodating new processes and data streams in the existing system. Some of the
issues stem from the nature of the scripts and their lack of language-level support to
accommodate the translation of the design into the implementation. Other issues relate
to the nature of the systems that are developed in this way - they are fast prototypes that
often stay around as the only implementation of the system design.

Apart from the lack of flexible and extensible processing framework, one of the
main problems in current Earth science systems is a lack of common metadata stan-
dards. This makes dealing with large volumes of data very difficult in terms of data
fusion and overall system flexibility. Additionally, the data come in many different for-
mats (HDF, HDF-EOS, ASCII, GRIB, binary, and many others), projections, and qual-
ity, which can introduce another complexity into the system’s ability to handle multiple
data streams.

Due to the inflexibility of many current Earth science processing systems, there is
often a long time lag between determining a need for a new capability and actually im-
plementing this need in the production. Our Java Distributed Application Framework
(JDAF) [5] adds this flexibility that will significantly cut the time required to support
new capabilities, whether we need to add a new data stream, produce a new data prod-
uct, or add a new model.

3 System Design

3.1 Overview

There were two main goals in the design of our system - flexibility and performance.
We wanted to be able to add new components into the system with minimum integration
efforts and make them produce results in a reasonable amount of time. One of the prob-
lems with many Earth science algorithms, is that they are contained in tens of thousands
of lines of legacy code written in C, Fortran and C++, and it would take substantial ef-
forts to re-write all of these algorithms in a way more suitable for integration. Instead,



we have decided to write a set of simple wrappers in C++ that would provide interface
between our system and the legacy code. These wrappers are subsequently used for
interaction between the Java framework and the processing algorithms using the Java
Native Interface (JNI) [6]. But adding new processing algorithm to the system is only
part of the solution, we would also like to integrate new data streams without the need
of changing the legacy code. This part is much harder, because the I/O components of
the existing algorithms are often almost inseparable from the core science processing.
We instead deploy a set of “filters” that on-the-fly preprocess the new data into a format
expected by the processing components. This task is greatly simplified due to the Earth
Science Markup Language (ESML) [7] - an XML-based language that provides mech-
anisms for reading scientific data sets in many formats only by changing their external
descriptions stored in XML files, and without the need to modify existing I/O code.

While flexibility of our system was the main goal, we also recognize the impor-
tance of performance, because many of the applications of Earth science data can be
part of time-critical systems, for example fire or flood monitoring. We exploit the in-
herent parallelism of Earth science algorithms in two ways - first, we use a cluster of
workstations to do the processing of independent components (for example to process
the data obtained from the MODIS instrument on Terra or Aqua satellites, we need
about 20 files that would cover the United States - these can all be processed indepen-
dent of each other and we distribute this processing on the cluster). Secondly, we create
MPI [10] wrappers around some of the more computationally intensive algorithms, like
the FPAR/LAI MODIS algorithm and perform internal parallelization that improves the
system performance over smaller geographic regions.

3.2 Data Descriptions

An important feature of the application framework is the decoupling of the data from
the algorithms. The objective is that rather than rewriting the data processing algorithms
to fit the appropriate data set, we implement filters that preprocess the data to the format
required by the algorithms. This facilitates faster development and encourages code re-
use.

In order for an application to be able to handle multiple data formats in a flexible
way, it needs to obtain detailed information about the data - this information can range
from data type to distribution information. Because the data vary so greatly in their
formats, from ASCII and simple binary, to Hierarchical Data Format (HDF) and HDF-
EOS, we had to find a metadata scheme that would be capable of including all the
different datasets that are of interest to the Earth science community. We have decided to
use metadata standard developed by the Federal Geographic Data Committee (FGDC)
[11] 1. The standard specifies a generic framework that can be used to describe any

1 As was mentioned above, we are using the capabilities of the Earth Science Markup Language
(ESML) to accomplish some of these goals, but despite that ESML is very suitable for in-
terpreting the structure of the data, it lacks the metadata descriptions, including projection,
quality, and many others. While ESML will very likely be our only choice in the future, we
are currently working on both ESML and our FGDC descriptions, because we are dependent
not only on the structure of the data, but also on its metadata.



geospatial data with regard to the following aspects: Identification, Data Quality, Spatial
Data Organization, Spatial Reference, Entity and Attribute Information, Distribution,
and Metadata Reference. The standard also specifies which of the above sections are
mandatory and which are optional. This simplifies greatly the data descriptions in case
of simple data sets when not all the information has to be included, but remains very
expressive in description of complex data sets. FGDC also provides a set of tools for
checking that metadata conforms to the specifications, and for conversion to XML and
HTML formats.

Since main parts of our application framework are written in Java, we have decided
to use XML for the metadata implementation, because Java provides extensive support
for handling of XML documents. It is the Java and XML combination that brings the
flexibility and extensibility into the design of the application framework. There are two
types of data that the framework must be able to handle - external that are coming from
outside of the system, and internal that are produced by the system. While we have
little control over the external data and their formats besides creating the ESML and
FGDC-compliant metadata descriptions, we have decided to use HDF5 [8] for internal
data representation. HDF5 is the latest version of the Hierarchical Data Format that
provides better support for Java and new internal organization that is very suitable for
our applications.

3.3 Processing, Distribution and Parallelization

Many Earth science algorithms are very complex, but they also often have only a small
degree of spatial dependency and thus are ideal for parallel processing. We utilize the
distributed features of the Java programming language to accommodate parallel pro-
cessing. With our framework we can build flexible and scalable processing ’pipelines’
that include preprocessing, processing and automated result analysis as independent
modules. This gives us the flexibility to add and remove modules on the fly, as well as
re-use existing code, and thus enables us to concentrate more on the science itself rather
than on system integration. Finally, we implement a batch mode so that the system can
run without user interventions for long periods of time, providing the scientists with an
automated way to obtain the results they need quickly and efficiently.

One of the many aspects of the Earth science data processing is the volume of the
data. This fact together with time complexity of some of the algorithms led us to pro-
vide mechanisms for parallel execution of the data processing whenever possible. For
example, a task of creating images of continental US from MODIS data involves repro-
jecting, mosaicing, subsampling and image conversion of the data. The MODIS data
comes in the form of tiles (continental US consists of about 20 tiles) that, at least dur-
ing part of the processing, are independent of each other. The part of the system that
handles the parallelism is the scheduler. The user/developer submits a request to the
scheduler describing what he/she wants to accomplish and how, and the scheduler will
load appropriate algorithm modules, I/O modules, and setup the execution sequence that
corresponds to the user’s requirements, executing modules in parallel whenever possi-
ble. In the example above, the scheduler would execute all the reprojection processes
in parallel with synchronization point before entering the mosaicing process. The im-
plementation of the execution environment is done by facilities of Java RMI [9]. Each



algorithm object has to implement a simple interface, and provide the code for execute()
method of the class. This object is than passed to the scheduler, which in turn forwards
it to one of the execution servers. The execution server calls the execute() method pro-
vided by the object and returns the results of the execution to the caller. The algorithms
themselves are often implemented in C or C++ and we use the Java Native Interface
(JNI) to make calls to the shared libraries that contain the appropriate modules.

In addition to exploiting the external (per-file) parallelism with RMI, we also per-
form internal parallelization of some of the key and compute intensive algorithms using
MPI. This is important when we want to perform large number of regional simulations
and analysis in interactive mode, or if the algorithm is a part of a near-real-time system,
as it may be in case of determining fire danger over a particular region. This internal
parallelization is especially efficient on CPU-bound algorithm executing in an environ-
ment with more resources (CPUs) that is needed for external parallelization. We have
started by parallelizing one of the key EOS products - Leaf Area Index (LAI) and Frac-
tion of Phosynthetically Active Radiation (FPAR), which are an essential input into our
TOPS system. We have obtained mixed results from this undertaking. While we were
able to speed-up the standalone version of the algorithm significantly, we have also
realized that with the advances in CPU capabilities over last 5 year many previously
CPU-bound algorithms are now I/O-bound. This will shift some of our future efforts to
pay more close attention to parallelization of the I/O components of the Earth science
algorithms.

4 TOPS Case Study

In order to estimate possible future states of the biosphere, we are building a flexible
system that integrates ecosystem models with frequent satellite observations, that can
be forced by weather or climate forecasts, and downscaled to resolutions appropriate to
resolve surface processes. The Terrestrial Observation and Prediction System is a mod-
eling software system that automatically integrates and pre-processes EOS data fields
so that land surface models can be run in near-realtime with minimal intervention, help-
ing accurate and timely interpretation of Earth Observing system data. Such a system
will allow us to determine the vulnerabilities of different socio-economic and resource
systems to fluctuations within our biosphere, and would help in mitigating potential
negative impacts. The goal of the TOPS system is the monitoring and prediction of
changes in key environmental variables. Early warnings of potential changes in these
variables such as soil moisture, snow pack, primary production and stream flow, could
enhance our ability to make better socio-economic decisions relating to natural resource
management and food production. The accuracy of such warnings depends on how well
the past, present, and future conditions of the ecosystem are characterized. The over-
all data flow through the system is depicted in Figure 1. The inputs needed by TOPS
include:

– Fractional Photosynthetically Active Radiation (FPAR) and Leaf Area Index (LAI)
– Temperatures (minimum, maximum, and daylight average)
– Precipitation
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Figure 1. Terrestrial Observation and Prediction System (TOPS) data fusion.



– Solar Radiation
– Humidity

We have several potential candidates inputs at the beginning of each model run. The
basic properties of the inputs are listed in Table 1. Even with this fairly small model,
there is a good variety of inputs we need to select from, depending on our goal.

Source Variables Frequency Resolution Coverage
Terra-MODIS FPAR/LAI 1 day 1km, 500m, 250m global
Aqua-MODIS FPAR/LAI 1 day 1km, 500m, 250m global

AVHRR FPAR/LAI 10 day 1km global
SeaWIFS FPAR/LAI 1 day 1km x 4km global

DAO temp, precip, rad, humidity 1 day 1.25 deg x 1.0 deg global
RUC2 temp, precip, rad, humidity 1 hour 40 km USA
CPC temp, precip 1 day point data USA

Snotel temp, precip 1 day point data USA
GCIP radiation 1 day 1/2 deg Continental

NEXRAD precipitation 1 day 4 km USA

The first step in the TOPS processing is the selection of the inputs. One thing to
note is that a criterion in selection may also be availability, because some inputs are not
always available. For example, both the Terra and Aqua satellites experienced technical
difficulties and data dropouts over periods ranging from few hours to several weeks.
Before the selection process can begin, we have to get the data into some common for-
mat, so that the dataset comparison is possible. In the case of TOPS, this comparison is
done with gridded data, so we have to make sure that we convert the point data (CPC
and Snotel) to grid data, which by itself is fairly complex and time-consuming process.
Next, the data are selected based on the goal, which at the start of the process is just
the current status of the variables we are interested in (primary productivity, soil wa-
ter content,. . .) over the continental US. After the data are selected, we must put them
into common format, which may involve reprojecting them into a common projection,
subset the dataset from its original spatial extent, and populate the input grid used by
the model. The data are then ran through the TOPS model, which generates desired
outputs. What follows is a new step in many Earth science systems: the data are com-
pared against long-term records and statistics, and the system determines whether there
is something important happening in the covered area. An example of such events may
include new fires being ignited, or rapid ice-melt and thus flooding potential. Whatever
the “interesting” event is, the system tries to investigate it further, and one way of ac-
complishing this is by getting a higher resolution information and going through the
input selection process again. The goal has now changed, both in terms of detail, but
also in geographic extent, because we no longer need to run the model over the entire
continent, but only over several selected areas. Furthermore, we would like more de-
tailed information, so we may actually choose to run a more complex model that runs
longer, but provides us with higher quality information on the ongoing events, together
with the prognosis for near future. As we can see, when this feedback loop is added to



TOPS, the complexity of the system goes up even further. TOPS provides only a simple
illustration of the potential problems, and is by far not as complex of many other models
and systems in the Earth science, some of which take dozens of different inputs, with
sizes reaching into terabytes for each model run.

5 Conclusions and Future Work

We have a prototype of the TOPS system that is producing data on continuous basis, but
we want to add a better handling of the input data fusion. This is accomplished through
the deployment of a planner that uses constraint-based logic to generate optimal pro-
cessing plans aimed at higher data quality. Additionally, we are also planning to add
a natural language interface (NLI) to the system, so that users can ask questions like
“What is the fire danger for Western Montana for tomorrow?”, the system will gener-
ate the appropriate plan, execute it, and return the results to the user. This makes the
system even more interactive, but it also points out the importance of the fast execution
of some of the processing components through parallelization and distributed process-
ing. Finally, we will be integrating XML-RPC and SOAP into our servers for better
flexibility and easier deployment.
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