SG Publications 2017

2017 Publications (Authors in bold):

  • Fisher, J.B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M.F., Hook, Baldocchi, D., Townsend, P.A., Kilic, A., Tu, K., Miralles, D.D., Perret, J., Lagouarde, J.-P., Waliser, D., Purdy, A.J., French, A., Schimel, D., Famiglietti, J.S., Stephens, G., Wood, E.F., 2017. (2017) The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resources Research 53(4): 2618-2626.
     
  • Cady-Pereira, K. E., V. H. Payne, J. L. Neu, K. W. Bowman, K. Miyazaki, E. A. Marais, S. Kulawik, Z. A. Tzompa-Sosa, and J. D. Hegarty (2017), Seasonal and spatial changes in trace gases over megacities from AURA TES observations: two case studies, Atmos. Chem. Phys., 17, 9379-9398, https://doi.org/10.5194/acp-2017-9379-2017.
     
    Abstract:
    The Aura Tropospheric Emission Spectrometer (TES) is collecting closely spaced observations over 19 megacities. The objective is to obtain measurements that will lead to better understanding of the processes affecting air quality in and around these cities, and to better estimates of the seasonal and interannual variability. We explore the TES measurements of ozone, ammonia, methanol and formic acid collected around the Mexico City metropolitan area (MCMA) and in the vicinity of Lagos (Nigeria). The TES data exhibit seasonal signals that are correlated with Atmospheric Infrared Sounder (AIRS) CO and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD), with in situ measurements in the MCMA and with Goddard Earth Observing System (GEOS)-Chem model output in the Lagos area. TES was able to detect an extreme pollution event in the MCMA on 9 April 2013, which is also evident in the in situ data. TES data also show that biomass burning has a greater impact south of the city than in the caldera where Mexico City is located. TES measured enhanced values of the four species over the Gulf of Guinea south of Lagos. Since it observes many cities from the same platform with the same instrument and applies the same retrieval algorithms, TES data provide a very useful tool for easily comparing air quality measures of two or more cities. We compare the data from the MCMA and Lagos, and show that, while the MCMA has occasional extreme pollution events, Lagos consistently has higher levels of these trace gases.
     
  • Smith, Jr., W. L., C. Hansen, A. Bucholtz, B. E. Anderson, M. Beckley, J. G. Corbett, R. I. Cullather, K. M. Hines, M. Hofton, S. Kato, D. Lubin, R. H. Moore, M. Segal-Rosenhaimer, J. Redemann, S. Schmidt, R. Scott, S. Song, J. D. Barrick, J. B. Blair, D. H. Bromwich, C. Brooks, G. Chen, H. Cornejo, C. A. Corr, S. –H. Ham, A. S. Kittelman, S. LeBlanc, N. G. Loeb, C. Miller, L. Nguyen, R. Palikonda, D. Rabine, E. A. Reid, J. A. Richter-Menge, P. Pilewskie, Y. Shinozuka, D. Spangenberg, P. Stackhouse, P. Taylor, K. L. Thornhill, D. van Gilst, and E. Winstead 2017, Arctic Radiation-IceBridge Sea and Ice Experiment: The Arctic Radiant Energy System during the Critical Seasonal Ice Transition, Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00277.1.

    Abstract:
    The National Aeronautics and Space Administration (NASA)’s Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE) acquired unique aircraft data on atmospheric radiation and sea ice properties during the critical late summer to autumn sea ice minimum and commencement of refreezing. The C-130 aircraft flew 15 missions over the Beaufort Sea between 4 and 24 September 2014. ARISE deployed a shortwave and longwave broadband radiometer (BBR) system from the Naval Research Laboratory; a Solar Spectral Flux Radiometer (SSFR) from the University of Colorado Boulder; the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) from the NASA Ames Research Center; cloud microprobes from the NASA Langley Research Center; and the Land, Vegetation and Ice Sensor (LVIS) laser altimeter system from the NASA Goddard Space Flight Center. These instruments sampled the radiant energy exchange between clouds and a variety of sea ice scenarios, including prior to and after refreezing began. The most critical and unique aspect of ARISE mission planning was to coordinate the flight tracks with NASA Cloud and the Earth’s Radiant Energy System (CERES) satellite sensor observations in such a way that satellite sensor angular dependence models and derived top-of-atmosphere fluxes could be validated against the aircraft data over large gridbox domains of order 100–200 km. This was accomplished over open ocean, over the marginal ice zone (MIZ), and over a region of heavy sea ice concentration, in cloudy and clear skies. ARISE data will be valuable to the community for providing better interpretation of satellite energy budget measurements in the Arctic and for process studies involving ice–cloud–atmosphere energy exchange during the sea ice transition period.